16,809 research outputs found

    On the infeasibility of entanglement generation in Gaussian quantum systems via classical control

    Full text link
    This paper uses a system theoretic approach to show that classical linear time invariant controllers cannot generate steady state entanglement in a bipartite Gaussian quantum system which is initialized in a Gaussian state. The paper also shows that the use of classical linear controllers cannot generate entanglement in a finite time from a bipartite system initialized in a separable Gaussian state. The approach reveals connections between system theoretic concepts and the well known physical principle that local operations and classical communications cannot generate entangled states starting from separable states.Comment: 6 pages, 3 figures. To appear in IEEE Transactions on Automatic Control, 201

    Association between Antibiotic Prescribing in Pregnancy and Cerebral Palsy or Epilepsy in Children Born at Term: A Cohort Study Using The Health Improvement Network.

    Get PDF
    Between 19%-44% pregnant women are prescribed antibiotics during pregnancy. A single, large randomised-controlled-trial (ORACLE Childhood Study II) found an increased risk of childhood cerebral palsy and possibly epilepsy following prophylactic antibiotic use in pregnant women with spontaneous preterm labour. We ascertained whether this outcome could be reproduced across the population of babies delivered at term and prospectively followed in primary-care using data from The Health Improvement Network

    Robust observer for uncertain linear quantum systems

    Get PDF
    In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analogue due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.Comment: 11 pages, 1 figur

    Generalizing Negative Imaginary Systems Theory to Include Free Body Dynamics: Control of Highly Resonant Structures with Free Body Motion

    Full text link
    Negative imaginary (NI) systems play an important role in the robust control of highly resonant flexible structures. In this paper, a generalized NI system framework is presented. A new NI system definition is given, which allows for flexible structure systems with colocated force actuators and position sensors, and with free body motion. This definition extends the existing definitions of NI systems. Also, necessary and sufficient conditions are provided for the stability of positive feedback control systems where the plant is NI according to the new definition and the controller is strictly negative imaginary. The stability conditions in this paper are given purely in terms of properties of the plant and controller transfer function matrices, although the proofs rely on state space techniques. Furthermore, the stability conditions given are independent of the plant and controller system order. As an application of these results, a case study involving the control of a flexible robotic arm with a piezo-electric actuator and sensor is presented
    • …
    corecore